

Toxicity and Accumulation of Cu and ZnO Nanoparticles in *Daphnia* magna

Yinlong Xiao,*,† Martina G. Vijver,† Guangchao Chen,† and Willie J. G. M. Peijnenburg†,‡

Supporting Information

ABSTRACT: There is increasing recognition that the wide use of nanoparticles, such as Cu (CuNPs) and ZnO nanoparticles (ZnONPs), may pose risks to the environment. Currently there is insufficient insight in the contribution of metal-based nanoparticles and their dissolved ions to the overall toxicity and accumulation. To fill in this gap, we combined the fate assessment of CuNPs and ZnONPs in aquatic test media with the assessment of toxicity and accumulation of ions and particles present in the suspensions. It was found that at the LC50 level of *Daphnia magna* exposed to the nanoparticle suspensions, the relative contributions of ions released from CuNPs and ZnONPs to toxicity were around 26% and 31%, respectively, indicating that particles

rather than the dissolved ions were the major source of toxicity. It was additionally found that at the low exposure concentrations of CuNPs and ZnONPs (below 0.05 and 0.5 mg/L, respectively) the dissolved ions were predominantly accumulated, whereas at the high exposure concentrations (above 0.1 mg/L and 1 mg/L, respectively), particles rather than the released ions played a dominant role in the accumulation process. Our results thus suggest that consideration on the contribution of dissolved ions to nanoparticle toxicity needs to be interpreted with care.

INTRODUCTION

Nanoparticles (NPs) are defined as particles with at least one dimension between 1 and 100 nm. Due to NPs' small size, they usually show unique physicochemical properties, such as high surface area and high mechanical strength. NPs are increasingly used in many applications. Cu nanoparticles (CuNPs) and ZnO nanoparticles (ZnONPs) have been manufactured on a large scale in different areas. For instance, CuNPs have been widely employed in catalysis and batteries, 1,2 and ZnONPs have been extensively used in cosmetics and UV-absorbers. Like other types of NPs, the recent increasing use of CuNPs and ZnONPs has also started to induce concern on their toxicity to some specific aquatic organisms, such as mussel and juvenile carp. Hence, there is a necessity to investigate the underlying processes resulting in the toxicity of CuNPs and ZnONPs to aquatic organisms.

Toxicity of NPs may be exerted by particles (designated as $NP_{(particle)}$ hereafter), 6,7 by dissolved ions released from NPs (designated as $NP_{(ion)}$ hereafter), 8,9 or by both $NP_{(particle)}$ and $NP_{(ion)}$. Undoubtedly, determining the contribution of $NP_{(particle)}$ and $NP_{(ion)}$ to the overall toxicity of nanoparticle suspensions (designated as $NP_{(total)}$ hereafter), is a crucial step in assessing and managing the possible adverse effects of NPs. Based on the existing literature, it is still hard to get a uniform conclusion about what is the major source of toxicity of NPs.

This may be due to the fact that many factors can affect the toxicity performance of NPs, not only the characteristics of the NPs, but also the exposure conditions. Thus, the underlying physicochemical mechanisms leading to the toxicity of different NPs to aquatic organisms should be investigated on a case by case basis, which suggests that more research should be performed to make a comprehensive consideration about this research question

In the present study, Daphnia magna was selected as a model organism. The 48 h toxicity of CuNPs and ZnONPs to D. magna was determined. To analyze the relative contribution of NP $_{(ion)}$ to the overall toxicity of CuNPs and ZnONPs (designated as CuNP $_{(total)}$ and ZnONP $_{(total)}$ hereafter, respectively), centrifugation and filtering methods were combined to separate the dissolved ions released from the NPs. Subsequently, the 48 h toxicity of the supernatants only containing NP $_{(ion)}$ to daphnids was investigated. In order to test whether using metal salts as substitutes for the dissolved ions released from NPs is effective, the toxicity of dissolved Cu released from CuNPs (designated as CuNP $_{(ion)}$ hereafter) and

Received: December 1, 2014 Revised: March 17, 2015 Accepted: March 18, 2015 Published: March 18, 2015

[†]Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, South Holland, The Netherlands

[‡]National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, Utrecht, The Netherlands

dissolved Zn released from ZnONPs (designated as ZnONP $_{(ion)}$ hereafter) to daphnia neonates was compared to the toxicity of $Cu(NO_3)_2$ and $Zn(NO_3)_2$. Additionally, the issue which species, $NP_{(particle)}$ or $NP_{(ion)}$, plays a major role in the accumulation process was investigated in this study.

MATERIALS AND METHODS

Test Materials, Test Medium, and Test Species. CuNPs with a nominal size of 50 nm (advertised specific surface area, $6-8 \text{ m}^2/\text{g}$; purity, 99.8%) and ZnONPs with a nominal size of 43 nm (advertised specific surface area, 27 m²/g; purity, 99.5%) were purchased from IoLiTecGmbh (Heibronn, Germany). Both CuNPs and ZnONPs were spherically shaped. Cu(NO₃)₂ and Zn(NO₃)₂ were purchased from Sigma-Aldrich (Zwijndrecht, The Netherlands).

Stock nanoparticle suspensions and salts were freshly prepared in ISO standard test medium (STM) after 20 min sonication in a water bath sonicator. The STM used in this study (pH 7.8 ± 0.2) contained (mg/L Milli-Q water): CaCl₂·2H₂O: 294; MgSO₄·7H₂O: 123.25; NaHCO₃: 64.75; KCl: 5.75.

Daphnia magna, originally obtained from the Dutch National Institute for Public Health and the Environment (RIVM), was selected as the test species. Artificial ElendtM4 medium was used to culture D. magna, 13 which was refreshed three times a week. The test organisms were cultured in plastic containers at a density of 1 individual/10 mL of ElendtM4 medium under a 16:8 light-dark cycle (20 ± 1 °C) and fed with Pseudokirchneriella subcapitata every 2 days.

Physicochemical Analysis. The morphology and size of CuNPs and ZnONPs in STM were characterized by using transmission electron microspectroscopy (TEM, JEOL 1010, JEOL Ltd., Japan). The samples were analyzed directly (which was around 1 h after submerging NPs into the STM, to which we will refer to as 1 h) and after 24 and 48 h. The size distribution and zeta potential of suspensions of CuNPs and ZnONPs at 1 mg/L were analyzed at 1, 24, and 48 h after incubation in the test medium by dynamic light scattering (DLS) on a zetasizer Nano-ZS instrument (Malvern, Instruments Ltd., UK). The actual exposure concentrations of CuNPs and ZnONPs, as well as Cu(NO₃)₂ and Zn(NO₃)₂ in the STM, were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) after digestion in 65% HNO₃ for at least 1 day. In order to obtain the CuNP_(ion) and ZnONP(ion), the two nanoparticle suspensions first were centrifuged at 30392 g for 30 min at 4 °C (Sorvall RC5Bplus centrifuge, Fiberlite F21-8 × 50y rotor) to obtain the supernatants, which were then filtered through a syringe filter with 0.02 μ m pore diameter (Antop 25, Whatman). We also applied ultracentrifugation and then performed DLS to confirm that the concentration of $NP_{(particle)}$ in the supernatants obtained by centrifugation at 30392 g for 30 min at 4 $^{\circ}C$ and subsequent filtration through a syringe filter with 0.02 μ m pore diameter was less than the detection limit, and the detailed information on the confirmation is given in the Supporting Information 1.

Assessment of the 48 h Release Profiles of Dissolved Cu and Zn. The release profiles of dissolved Cu released from the CuNPs at 0.1 mg/L and 10 mg/L for a maximum of 48 h of exposure and the release of dissolved Zn released from the ZnONPs at 1 mg/L and 10 mg/L for a maximum of 48 h of exposure in the STM were investigated. At different times, namely after being exposed to the medium for 1, 12, 24, 36, and

48 h, CuNPs and ZnONPs samples were centrifuged at 30392 g for 30 min at 4 °C (Sorvall RC5Bplus centrifuge, Fiberlite F21-8 \times 50y rotor), and then the supernatants were filtered through a syringe filter with 0.02 $\mu \rm m$ pore diameter (Antop 25, Whatman). Subsequently, the Cu concentrations and Zn concentrations in the supernatants after filtration were measured by ICP-OES. To analyze the losses of NPs and NP (ion) after centrifugation and filtration, experiments were conducted, and the detailed information on the analysis was given in the Supporting Information 2.

The 48 h Acute Toxicity Test. OECD Guideline 202 with slight modifications was used to test the acute toxicity of the two nanoparticle suspensions. Before the start of the acute toxicity test, daphnids were kept in the STM for 1-2 h to evacuate their guts. The toxicity tests were performed using neonates (<24 h). Five individuals were transferred into a test vial, containing 20 mL of CuNPs or ZnONPs, or metal salt solutions, or control. Based on the results of range finding experiments, exposure concentrations from 0.02 mg/L to 0.16 mg/L for CuNPs and from 0.4 mg/L to 2.6 mg/L for ZnONPs, as well as from 0.01 mg/L to 0.06 mg/L for Cu(NO₃)₂ and from 0.5 mg/L to 1.5 mg/L for $Zn(NO_3)_2$ were selected. Each test was composed of 8 to 10 different exposure concentrations, and each exposure concentration was tested with 4 replicates. Daphnids were incubated under a 16:8 h light/dark photoperiod (20 \pm 1 °C) without feeding during the 48 h exposure period. To avoid significant changes in the concentrations of the nanoparticle suspensions, the exposure media were refreshed every 24 h.

Besides investigating the toxicity of the suspensions of CuNPs and ZnONPs, the relative contribution of NP $_{\rm (particle)}$ and NP $_{\rm (ion)}$ to the toxicity induced by the suspensions of CuNPs and ZnONPs was also examined. In order to better simulate the contribution of CuNP $_{\rm (ion)}$ and ZnONP $_{\rm (ion)}$ to the overall toxicity, the supernatants after filtration of the two NPs in the STM were prepared as described above. The neonate daphnids were then exposed to the supernatants according to the same procedures as described above. To compare with the toxicity of the freshly prepared solutions of CuNP $_{\rm (ion)}$ and ZnONP $_{\rm (ion)}$, the toxicity of Cu(NO $_{\rm 3}$) $_{\rm 2}$ and of Zn(NO $_{\rm 3}$) $_{\rm 2}$ to *D. magna* was tested with the same procedures as described above, as well.

Accumulation Experiments. Experiments were conducted to identify the accumulation profiles of D. magna exposed to CuNPs, ZnONPs, and their corresponding dissolved ions. In brief, D. magna (8 d old) were transferred to the suspensions of CuNPs and ZnONPs at a density of 1 individual/10 mL with 3 replicates. The concentrations of CuNPs applied in the accumulation experiments were 0.1 and 0.05 mg/L, and the concentrations of ZnONPs were 1 and 0.5 mg/L, respectively. These concentrations were selected based on the results of the acute toxicity tests described above, which concerned the LC50. Adult daphnids (8 d old) were utilized. We first of all selected adult daphnids because they are more easy to handle, compared to neonates. Moreover, due to physiological (e.g., surfacevolume ratio) and behavioral aspects adults are often less susceptible to NPs compared to juvenile and neonate life stages in ecotoxicity studies, 14,15 which allowed us to analyze accumulation characteristics at high concentration of nanoparticle suspensions. Finally, it is advantageous to use adults as growth dilution may be reduced. 16,17 In order to distinguish between the contribution of $NP_{(particle)}$ and $NP_{(ion)}$ to accumulation, D. magna were also exposed to the supernatants **Environmental Science & Technology**

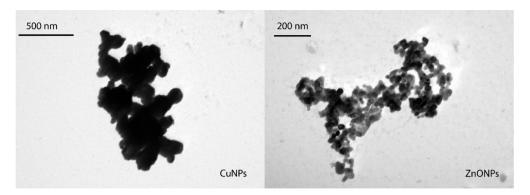


Figure 1. TEM images of CuNPs and ZnONPs after 1 h of incubation in the standard test medium (STM).

Table 1. Hydrodynamic Diameter and Zeta-Potential of 1 mg/L Suspensions of CuNPs and ZnONPs in the STM^a

	hydrodynamic diameter (nm)			zeta potential (mV)			
type	1 h	24 h	48 h	1 h	24 h	48 h	
CuNPs	568 ± 72	879 ± 228	953 ± 525	-14 ± 4	-9 ± 3	-4 ± 2	
ZnONPs	1154 ± 252	1647 ± 129	1871 ± 509	-10 ± 2	-6 ± 1	-3 ± 2	
"Hydrodynamic size and zeta potential were expressed as mean \pm SD ($n = 3$).							

of the CuNPs at the initial CuNPs concentrations of 0.1 mg/L and 0.05 mg/L and to the supernatants of ZnONPs at the initial ZnONPs concentrations of 1 mg/L and 0.5 mg/L. These supernatants were prepared as described above. Many recent studies have shown that the accumulation of NPs in D. magna is a rapid process. 18-20 Hence, a 48 h exposure period was selected in our test. Similar to the acute toxicity tests, the accumulation experiments were conducted under a 16:8 h light/dark photoperiod (20 \pm 1 °C) without feeding during the 48 h exposure period. The exposure media were refreshed every 24 h. After the 48 h exposure period, 10 mobile daphnids were sampled from each exposure medium, and they then were transferred to Milli-Q water for 1-3 min. Subsequently, they were rinsed three times with fresh Milli-Q water. After rinsing, they were dried at 80 °C overnight in preweighed glass containers before weighing on a microbalance and then digested in 69% HNO3 at 80 °C overnight. The Cu and Zn concentrations in the digested samples were subsequently determined by ICP-OES.

To clarify in this study, accumulation is defined as the absorbed and adsorbed metals after rinsing the daphnids. As after rinsing the daphnids with Milli-Q water, NPs may not be completely removed and may still be adsorbed to the outside of organisms. Surface adsorption of NPs onto the exterior of *D. magna* limits their biological activity and also may pose risks to their health development. For example, Dabrunz et al.²¹ found that adsorbed NPs caused mortality through reducing the molting rate of *D. magna*. Hence, both absorbed and adsorbed fractions are considered in this study.

Relative Contribution to Toxicity of NP_(particle) and NP_(ion). The neonates of D. magna were exposed to the nanoparticle suspensions containing a mixture of NP_(particle) and NP_(ion). The behavior and toxicity of chemicals in a mixture may not conform to that predicted from data on pure compounds.²² Complicated and remarkable changes in the apparent properties of its constituents can be induced by interactions of components in a mixture, leading to increased or decreased effects compared with the ideal reference case of additive behavior. For evaluation of the joint toxicity of mixtures, the concentration addition (CA) model and the

independent action (IA) model are two prominent reference models, both of which have been mechanistically supported by pharmacology. Which model is preferably employed to analyze the combined effects of chemicals in a mixture is based on the mode of action. Specifically, the CA model can be utilized to estimate the combined effects of chemicals in a mixture with a similar mode of action, whereas the IA model is employed to analyze the joint effects of chemicals with dissimilar mode of actions. The response addition model is often used as a synonym for the IA model. Based on the previous literature, it is widely believed that the modes of actions of $NP_{(particle)}$ and $NP_{(ion)}$ are likely to be dissimilar. Thus, the response addition model was selected in the present study to calculate the relative contribution to toxicity of $NP_{(particle)}$ and $NP_{(ion)}$. The response addition model is defined as follows

$$E_{\text{(total)}} = 1 - [(1 - E_{\text{(ion)}})(1 - E_{\text{(particle)}})]$$

where $E_{(\rm total)}$ and $E_{(\rm ion)}$ represent the toxicity caused by the nanoparticle suspensions and their corresponding released ions (scaled from 0 to 1). In the present study, $E_{(\rm total)}$ and $E_{(\rm ion)}$ were quantified experimentally. This makes $E_{(\rm particle)}$ as the only unknown, allowing for direct calculation of the effects caused by the NP_(particle).

Statistical Analysis. All data are expressed as the mean with the corresponding standard deviation (SD). The LC50 values and 95% confidence intervals (95% CI) were calculated by GraphPad Prism 5 using nonlinear regression. Based on normality and homogeneity of variance, statistically significant differences between accumulation groups were determined by t-test. The significance level in all calculations was set at p < 0.05.

RESULTS

Physicochemical Characterization of CuNPs and ZnONPs. TEM images of CuNPs and ZnONPs are presented in Figure 1. The images demonstrate that the CuNPs and ZnONPs used in this study were spherical particles. However, the CuNPs and ZnONPs aggregated intensely into irregular shapes in the STM. DLS was performed for determining the

Environmental Science & Technology

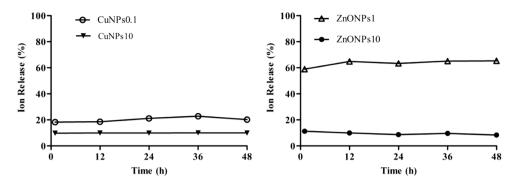


Figure 2. Relative percentages of dissolved Cu released from CuNPs at the concentrations of 0.1 mg/L and 10 mg/L and of dissolved Zn released from ZnONPs at the concentrations of 1 mg/L and 10 mg/L, during 48 h of incubation in the STM. Data are mean \pm SD (n = 3).

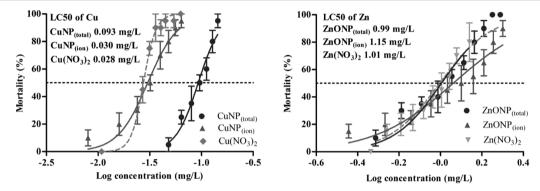


Figure 3. Dose—response curves of mortality (%) of *D. magna* exposed to different concentrations of $CuNP_{(total)}$, $ZnONP_{(total)}$, $CuNP_{(ion)}$, $ZnONP_{(ion)}$, $Cu(NO_3)_2$, and $Zn(NO_3)_2$ for 48 h. Actual log-transformed Cu or Zn concentrations are plotted on the *x*-axis. Data are mean \pm SD (n = 4).

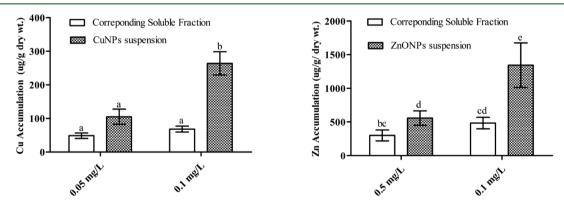


Figure 4. Accumulation (μ g/g dry wt) of Cu and Zn in *D. magna* after exposure for 48 h to 0.05 mg/L and 0.1 mg/L of CuNPs suspensions and to 0.5 mg/L and 1.0 mg/L of ZnONPs suspensions, the corresponding dissolved Cu released from the above concentrations of CuNPs, and the corresponding dissolved Zn released from the above concentrations of ZnONPs. The different letters indicate the significant differences of accumulation levels, p < 0.05; The p-value between different accumulation groups was determined by means of the t-test.

hydrodynamic diameter of the CuNPs and ZnONPs suspended in STM. Data on size distributions after 1, 24, and 48 h are given in Table 1. Both NPs aggregated as soon as being submerged into the STM. The particle size of CuNPs in the STM was found to increase from 568 ± 72 nm after 1 h of incubation to 953 ± 525 nm after 48 h of incubation, and the particle size of ZnONPs shifted from 1154 ± 252 nm after 1 h of incubation to 1871 ± 509 nm after 48 h of incubation. The zeta potential of the two nanoparticle suspensions increased after NPs being submerged into the medium. The zeta potential of the CuNPs increased from -14 ± 4 after 1 h of incubation to -4 ± 2 after 48 h of incubation. Similarly, the zeta potential of the ZnONPs increased from -10 ± 2 after 1 h of incubation to -3 ± 2 after 48 h of incubation.

The 48 h Ion Release Profiles of CuNPs and ZnONPs. The 48 h release profiles of CuNPs of ZnONPs are shown in Figure 2. The percentage of CuNP $_{(ion)}$ in the CuNPs suspension at 0.1 mg/L shifted from 18% after 1 h of incubation to 20% after 48 h of incubation. The ZnONPs at 1 mg/L showed a relatively high degree of dissolution. The percentage of the ZnONP $_{(ion)}$ increased from 59% after 1 h of incubation to 65% after 48 h of incubation in the STM. As for the percentages of the CuNP $_{(ion)}$ and ZnONP $_{(ion)}$ in the nanoparticle suspensions at 10 mg/L, both of them remained around 10% during the 48 h of incubation.

The 48 h Acute Toxicity of CuNPs and ZnONPs. All the exposures of neonate daphninds to the nanoparticle suspensions and their dissolved ions induced significant toxicity

(Figure 3). CuNP $_{(total)}$ showed a much lower 48 h LC50 value of 0.093 mg/L (with a 95% CI of 0.86–0.101 mg/L), compared to ZnONP $_{(total)}$ (0.99 mg/L, with a 95% CI of 0.92–1.07 mg/L). The LC50 value of CuNP $_{(ion)}$ was 0.030 mg/L (with a 95% CI of 0.027–0.034 mg/L), and the LC50 value of the ZnONP $_{(ion)}$ was 1.15 mg/L (with a 95% CI of 1.02–1.30 mg/L), which indicated that the CuNP $_{(ion)}$ was also much more toxic (over 10 times) to *D. magna*, compared to the ZnONP $_{(ion)}$. The dose–response curves for Cu(NO₃)₂ and Zn(NO₃)₂ are also given in Figure 3. The LC50 of Cu(NO₃)₂ to the neonates was 0.028 mg/L (with a 95% CI of 0.026–0.029 mg/L), which was similar to the LC50 value of the CuNP $_{(ion)}$. Likewise, the LC50 of Zn(NO₃)₂ (1.01 mg/L, with a 95% CI of 0.94–1.09 mg/L) was similar to the LC50 level of the ZnONP $_{(ion)}$.

The 48 h Accumulation Characteristics of CuNPs and **ZnONPs.** The accumulation profiles of CuNPs and ZnONPs are shown in Figure 4. At the low CuNPs concentration (0.05 mg/L), the overall accumulation of Cu (105 \pm 39 μ g/g dry weight) in daphnids was higher than the accumulation of the $\text{CuNP}_{\text{(ion)}}$ (49 ± 14 μ g/g dry weight). Moreover, at the high CuNPs concentration (0.1 mg/L), the overall accumulation of Cu was 264 \pm 60 μ g/g dry weight, which was significantly higher than the accumulation of the CuNP_(ion) (68 \pm 15 μ g/g dry weight, p < 0.05). As for the Zn accumulation, the overall accumulation of Zn at 0.5 mg/L of ZnONPs (558 \pm 106 μ g/g dry weight) was significantly higher than the accumulation of $ZnONP_{(ion)}$ (301 ± 82 $\mu g/g$ dry weight, p < 0.05). Likewise, the overall accumulation of Zn at 1 mg/L of ZnONPs (1345 \pm 331 μ g/g dry weight) was significantly higher than the accumulation of ZnONP_(ion) (484 \pm 85 μ g/g dry weight, p <

Relative Contribution of $NP_{(particle)}$ and $NP_{(ion)}$ to Toxicity and Accumulation. The relative contribution of $NP_{(particle)}$ and $NP_{(ion)}$ to the overall toxicity at the LC50 levels of CuNPs and ZnONPs to neonates is given in Table 2. The

Table 2. Relative Contribution of $NP_{(particle)}$ and $NP_{(ion)}$ to Mortality at the LC50 Level of the CuNPs and ZnONPs Exposed to Neonate Daphnids^a

	relative contribution to mortality (%)		
type	$NP_{(particle)}$	NP _(ion)	
Cu	74 ± 5	26 ± 5	
Zn	69 ± 4	31 ± 4	

^aThe relative contribution of $NP_{(particle)}$ and $NP_{(ion)}$ to mortality was expressed as mean \pm SD (n = 4).

relative contribution of $\text{CuNP}_{(\text{ion})}$ to toxicity was only 26%, whereas $\text{CuNP}_{(\text{particle})}$ accounted for about 74% of the relative contribution to mortality at the LC50 level of $\text{CuNP}_{(\text{total})}$. ZnONP $_{(\text{ion})}$ only contributed a fraction of 31% to the overall toxicity, compared to the contribution of $\text{ZnONP}_{(\text{particle})}$. In addition, the relative contribution to accumulation of $\text{NP}_{(\text{particle})}$ and $\text{NP}_{(\text{ion})}$ is calculated and shown in Table 3. At the low concentration of CuNPs (0.05 mg/L), $\text{CuNP}_{(\text{ion})}$ contributed around 52% to the overall accumulation, whereas at the concentration of 0.1 mg/L of CuNPs, $\text{CuNP}_{(\text{ion})}$ merely accounted for about 28%. Likewise, at the low concentration of ZnONPs (0.5 mg/L), ZnONP $_{(\text{ion})}$ could explain about 53% of the overall Zn accumulation, while at the high concentration (1 mg/L of ZnONPs), ZnONP $_{(\text{ion})}$ only contributed around 36% to the overall Zn accumulation.

Table 3. Relative Contribution of $NP_{(particle)}$ and $NP_{(ion)}$ to Accumulation at Different Concentrations of Nanoparticle Suspensions^a

	relative contribution	relative contribution to accumulation $(\%)$		
suspensions	$NP_{(particle)}$	NP _(ion)		
CuNPs at 0.05 mg/L	48 ± 25	52 ± 25		
CuNPs at 0.1 mg/L	72 ± 12	28 ± 12		
ZnONPs at 0.5 mg/L	47 ± 5	53 ± 5		
ZnONPs at 1 mg/L	64 ± 3	36 ± 3		

^aThe relative contribution of $NP_{(particle)}$ and $NP_{(ion)}$ to accumulation was expressed as mean \pm SD (n=3).

DISCUSSION

Ion Release Profiles of CuNPs and ZnONPs. In this study, ZnONPs were demonstrated to be more soluble than CuNPs. ZnONPs showed an especially rapid dissolution process at a low concentration in the STM. We found that 59% of the ZnONPs at 1 mg/L were already dissolved after 1 h of incubation (Figure 2). This result was similar to the recent result obtained by Adam et al.²⁶ who detected that ZnONPs (with a nominal size of 30 nm) showed 60% of dissolution within 1-2 h in the ISO medium. However, it is worth noting that the percentage of ZnONP(ion) is reported to vary considerably in the existing literature. For example, Merdzan et al.²⁷ found that the percentage of dissolved Zn released from bare ZnONPs with a nominal size of 20 nm was to a large extent (>85%) present in solution (10⁻² M HEPES, 10⁻⁵ M Ca, pH 7.0) after 24 h of exposure. This is higher than the extent of dissolution we found in our study. However, another study reported that the percentages of $ZnONP_{(ion)}$ were only 30% at $0.5 \ mg/L$ of ZnONPs and 20% at $2 \ mg/L$ of ZnONPs after 24h of exposure in simplified M7 medium. 18 This discrepancy is a reflection of the combined effects exerted by the characteristics of NPs and exposure medium, such as, ionic strength and pH of the test medium, ¹⁸ presence of coatings, ²⁷ and particle size. ²⁸ The ion-release profiles of NPs should thus be analyzed on a case-by-case basis. At the high concentration applied in this study (10 mg/L), the percentages of CuNP_(ion) and ZnONP_(ion) were almost constant around 10%, much lower than the percentages of $ZnONP_{(ion)}$ and $CuNP_{(ion)}$ at the low concentrations (namely 1 mg/L ZnONPs and 0.1 mg/L CuNPs). Similarly, Zhao and Wang²⁰ found that at a low concentration of Ag NPs (10 μ g/L) in SM7 medium, the relative percentage of the dissolved Ag released from Ag NPs could be beyond 50%, while at a high concentration of Ag NPs (1000 μ g/L) the percentage of dissolved Ag remained constant at less than 10%. These results indicate that the concentration of NPs is also an important factor to consider regarding the dissolution characteristics of NPs, since the equilibrium between dissolved and adsorbed ions might potentially play a role. Furthermore, it needs to be noted that, especially at high nanoparticle concentrations, the percentage of NP(ion) remains constant during the whole exposure time.

Acute Toxicity of CuNPs and ZnONPs. In the present study, CuNPs were found to have a LC50 level (0.093 mg/L), which was over 10 times lower than that of ZnONPs (0.99 mg/L). It is thus obvious that *D. magna* is much more vulnerable to dispersions of CuNPs than to dispersions of ZnONPs. Previous toxicity assessments of NPs have primarily focused on probing into the effects of different exposure routes, such as the respiratory or gastrointestinal tracts.²⁹ Most previous research

did not distinguish between the relative contributions of NP_(particle) and NP_(ion) to the overall toxicity induced by NPs or have simply compared the overall toxicity of metal-based NPs with that of corresponding metal salts. However, metal salts import other types of ionic species into solutions, compared to the NP(ion) directly, which may exert effects on acute toxicity through combined effects on physiological characteristics and metal speciation.³⁰ In this study, to investigate whether using metal salts to replace NP(ion) is effective, comparison of acute toxicity between freshly prepared CuNP(ion) and ZnONP(ion) and the corresponding metal salts was conducted, respectively. Similar LC50 values of the CuNP(ion) and Cu(NO₃)₂ and of the ZnONP(ion) and Zn(NO₃)₂ were obtained. Our results indicate that using Cu(NO₃)₂ and Zn(NO₃)₂ to substitute for CuNP_(ion) and ZnONP(ion) is effective. Furthermore, the results of assessment of the relative contribution to mortality revealed that the CuNP(ion) and ZnONP(ion) were not the major source of acute toxicity of CuNPs and ZnONPs. Similarly, Li and Wang¹⁸ also concluded that the toxicity of ZnONPs to D. magna can not only be attributed to the $ZnONP_{(ion)}$, and Santo et al.6 even found that the ZnONP(ion) did not make any contribution to the toxicity of ZnONPs to D. magna. However, there are also studies which attributed the toxicity of metalbased or metaloxide-based NPs to the NP(ion). For instance, Adam et al.9 concluded that the toxicity of ZnONPs to D. magna can be largely attributed to the $NP_{(ion)}$ rather than the $NP_{(particle)}$; Jo et al.⁸ reported that the dissolved Cu released from CuO NPs largely contributed to the observed acute toxicity to D. magna. The different characteristics of NPs and exposure conditions, such as the size of NPs³¹ or the pH value of the exposure medium, 32 may lead to the apparent discrepancy. Thus, more toxicity tests involving a wider range of NPs, exposure conditions, and model organisms should be conducted in the future. Thereupon, a more explicit description of the test condition is needed.

Accumulation Characteristics of CuNPs and ZnONPs. Although the mechanisms underlying the CuNPs and ZnONPs mediated toxicity in D. magna are poorly known, a significant accumulation of CuNPs and ZnONPs in daphnids was observed in this study. The concentrations of Cu and Zn detected in daphnids were quite high (up to 0.1%). These findings are similar to but lower than the maximum body burdens observed for uptake studies with D. magna for carbon nanotubes (6.8%),³³ fullerenes (0.7%),³⁴ and graphene (0.7%).35 Furthermore, the accumulation results display that the internal concentrations of Cu and Zn were proportional to the concentrations of CuNPs and ZnONPs administered in this study (Figure 4). Actually D. magna are filter feeders, enabling them to ingest particles smaller than the size of 70 um.³⁶ In our study, both CuNPs and ZnONPs aggregates were far smaller than 70 μ m (median particle size about 1 μ m), thus they could be readily taken up by daphnids. On the other hand, the aggregation of CuNPs and ZnONPs to approximately 1 μ m makes sedimentation likely to have occurred. There is evidence that sediment particles are ingested by daphnids, 33,37 but the accumulating rate might be different to suspended particles³⁸ and furthermore the adsorption to daphnids' carapace and appendages might also be different to dispersions if the particles are applied as large aggregates and agglomerates.³⁷ Therefore, also the size of NPs' aggregates might be of importance in the accumulation study. At the high concentration of nanoparticle suspensions applied, both $CuNP_{(ion)}$ and $ZnONP_{(ion)}$ contributed only to a limited extent to the accumulation of Cu and

Zn, respectively (Figure 4). These results indicate that $NP_{(particle)}$ play a dominant role in the accumulation process at the high concentration of CuNPs and ZnONPs, in line with the conclusion obtained from the toxicity assessment of the NP_(particle) exposed to neonates. This dominant role of NP_(particle) in the accumulation process might be reflected in the following manifestations. D. magna ingested metals in the particle form more than in the ion form in this study. $NP_{(particle)}$ existing in nanoparticle suspensions may facilitate the intake of NP_(ion) by adsorbing metal ions on their surface areas.³⁹ It also might be that NP_(particle) became predominately packed in an organism gut tract. There was adsorption of $NP_{(particle)}$ to the outer shell of daphnids partly. Finally, all the above manifestations could coexist. However, which manifestation is the major reason that results in the leading role of $NP_{(particle)}$ requires further research. At the low concentration of the nanoparticle suspensions applied in this study (namely 0.05 mg/L CuNPs and 0.5 mg/L of ZnONPs), both the relative contributions to accumulation of CuNP(ion) and ZnONP(ion) increased to around 50% (Table 3). The different contribution to accumulation of $\ensuremath{\text{NP}}_{(\text{ion})}$ might be caused by the different dissolubility of NPs. At a low particle concentration, the proportion of dissolved NPs tends to be higher, whereas it tends to be lower at a high particle concentration. 24,25,40 Thus, a higher proportion of NP(ion) might be ingested by organisms at a lower concentration of NPs than at a higher concentration of NPs. Consequently, when the concentrations of CuNPs and ZnONPs were below 0.05 mg/L and 0.5 mg/L, respectively, NP_(ion) were predominantly accumulated. The results indicate that at a low concentration of nanoparticle suspensions, ions released from metallic nanoparticles like Cu and ZnO are overshadowing the effects of NPs.

■ ENVIRONMENTAL IMPLICATIONS

This study investigated the potential environmental effects of CuNPs and ZnONPs and their corresponding dissolved ions. Our results demonstrate that at the LC50 levels of CuNPs and ZnONPs suspensions, the NP_(particle) dominated the toxicity rather than the NP_(ion). Additionally, at the low exposure concentrations of CuNPs and ZnONPs (below 0.05 mg/L of CuNPs and 0.5 mg/L of ZnONPs, respectively) the NP_(ion) was predominantly accumulated, whereas at the high exposure concentration (above 0.1 mg/L of CuNPs and 1 mg/L of ZnONPs, respectively), NP_(particle) not only played a dominant role in the accumulation process but also was the species primarily responsible for toxicity.

ASSOCIATED CONTENT

Supporting Information

Comparison of the ion concentration in the supernatants prepared by regular centrifugation employed in the present study and ultracentrifugation and comparison the particle profiles of the STM and of the supernatants of CuNPs and ZnONPs (Supporting Information 1). The losses of NPs and NP $_{\rm (ion)}$ after centrifugation and filtration (Supporting Information 2). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Phone: 31 (0)71 527 5609. Fax: 31 (0)71 527 7434. E-mail: xiao@cml.leidenuniv.nl.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors would like to thank Gerda Lamers (Leiden University) for the technical help of transmission electron microscopy. The Chinese Scholarship Council (CSC) is gratefully acknowledged for its financial support to Yinlong Xiao and Guangchao Chen. Part of the work was performed within the framework of the EU-sponsored FP7 project "FutureNanoNeeds", grant agreement number 604602, and the NATO sponsored project "Ecotoxicity of Metal and Metal Oxide Nanoparticles: Experimental Study and Modelling", project number SFPP•984401.

■ REFERENCES

- (1) Radi, A.; Pradhan, D.; Sohn, Y.; Leung, K. T. Nanoscale shape and size control of cubic, cuboctahedral and octahedral Cu-Cu₂O coreshell nanoparticles on Si(100) by one-step, templateless, cappingagent-free electrodeposition. ACS Nano 2010, 4 (3), 1553–1560.
- (2) Zhang, D. W.; Yi, T. H.; Chen, C. H. Cu nanoparticles derived from CuO electrodes in lithium cells. *Nanotechnology* **2005**, *16* (10), 2338–2341.
- (3) Becheri, A.; Dürr, M.; Nostro, P. L.; Baglioni, P. Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. *J. Nanopart. Res.* **2008**, *10* (4), *679*–689.
- (4) Hu, W.; Culloty, S.; Darmody, G.; Lynch, S.; Davenport, J.; Ramirez-Garcia, S.; Dawson, K. A.; Lynch, I.; Blasco, J.; Sheehan, D. Toxicity of copper oxide nanoparticles in the blue mussel, *Mytilus edulis*: A redox proteomic investigation. *Chemosphere* **2014**, *108* (2014), 289–299.
- (5) Hao, L. H.; Chen, L.; Hao, J. M.; Zhong, N. Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (*Cyprinus carpio*): A comparative study with its bulk counterparts. *Ecotoxicol. Environ. Saf.* **2013**, *91* (2013), 52–60.
- (6) Santo, N.; Fascio, U.; Torres, F.; Guazzoni, N.; Tremolada, P.; Bettinetti, R.; Mantecca, P.; Bacchetta, R. Toxic effects and ultrastructural damages to *Daphnia magna* of two differently sized ZnO nanoparticles: Does size matter? *Water Res.* **2014**, *53* (2014), 339–350.
- (7) Cronholm, P.; Karisson, H. L.; Hedberg, J.; Lowe, T. A.; Winnberg, L.; Elihn, K.; Wallinder, I. O.; Möller, L. Intracellular uptake and toxicity of Ag and CuO nanoparticles: A comparison between nanoparticles and their corresponding metal ions. *Small* **2013**, 9 (7), 970–982.
- (8) Jo, J. H.; Choi, J. W.; Lee, S. H.; Hong, S. W. Acute toxicity of Ag and CuO nanoparticle suspensions against *Daphnia magna*: The importance of their dissolved fraction varying with preparation methods. *J. Hazard. Mater.* **2012**, 227–228 (2012), 301–308.
- (9) Adam, N.; Schmitt, C.; Galceran, J.; Companys, E.; Vakurov, A.; Wallace, R.; Knapen, D.; Blust, R. The chronic toxicity of ZnO nanoparticles and ZnCl₂ to *Daphnia magna* and the use of different methods to assess nanoparticles aggregation and dissolution. *Nanotoxicology* **2014**, 8 (7), 709–717.
- (10) Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008, 42 (23), 8959–8964.
- (11) Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H. C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO₂ to bacteria *Vibrio fischeri* and crustaceans *Daphnia magna* and *Thamnocephalus*. *Chemosphere* **2008**, *71* (7), 1308–1316.
- (12) Griffitt, R. J.; Weil, R.; Hyndman, K. A.; Denslow, N. D.; Powers, K.; Taylor, D.; Barber, D. S. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (*Danio rerio*). *Environ. Sci. Technol.* **2007**, *41* (23), 8178–8186.

- (13) OECD Guideline for Testing of Chemicals. *Daphnia* sp., Acute Immobilization Test. OECD 202. Paris, 2004.
- (14) Ates, M.; Daniels, J.; Arslan, Z.; Farah, I. O. Effects of aqueous suspensions of titanium dioxide nanoparticles on *Artenia salina*: assessment of nanoparticle aggregation, accumulation, and toxicity. *Environ. Monit. Assess.* **2013**, *185* (4), 3339–3348.
- (15) Wang, Y.; Chen, Z. J.; Ba, T.; Pu, J.; Chen, T.; Song, Y. S.; Gu, Y. G.; Qian, Q.; Xu, Y. Y.; Xiang, K.; Wang, H. F.; Jia, G. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. *Small* **2013**, *9* (9–10), 1742–1752.
- (16) Karimi, R.; Chen, C. Y.; Pickhardt, P. C.; Fisher, N. S.; Folt, C. L. Stoichiometric controls of mercury dilution by growth. *Proc. Natl. Acad. Sci. U.S.A.* **2007**, *104* (2007), 7477–7482.
- (17) He, X.; Wang, W. X. Kinetics of phosphorus in Daphnia at different food concentrations and carbon: phosphorus ratios. *Limnol. Oceanogr.* **2007**, 52 (1), 395–406.
- (18) Li, W. M.; Wang, W. X. Distinct biokinetic behavior of ZnO nanoparticles in *Daphnia magna* quantified by synthesizing ⁶⁵Zn tracer. *Water Res.* **2013**, 47 (2), 895–902.
- (19) Tan, C.; Fan, W.-H.; Wang, W.-X. Role of titanium dioxide nanoparticles in the elevated uptake and retention of cadmium and zinc in *Daphnia magna*. *Environ. Sci. Technol.* **2012**, 46 (1), 469–476.
- (20) Zhao, C. M.; Wang, W. X. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to *Daphnia magna*. *Nanotoxicology* **2012**, *6* (4), 361–370.
- (21) Dabrunz, A.; Duester, L.; Prasse, C.; Seitz, F.; Rosenfeldt, R.; Schilde, C.; Schaumann, G. E.; Schulz, R. Biological surface coating and molting inhibition as mechanisms of TiO₂ nanoparticle toxicity in *Daphnia magna*. *PLoS One* **2011**, *6* (5), e20112.
- (22) Altenburger, R.; Nendza, M.; Schüürmann, G. Mixture toxicity and its modeling by quantitative structure-activity relationships. *Environ. Toxicol. Chem.* **2003**, 22 (8), 1900–1915.
- (23) Faust, M.; Altenburger, R.; Backhaus, T.; Blanck, H.; Boedeker, W.; Gramatica, P.; Hamer, V.; Scholze, M.; Vighi, M.; Grimme, L. H. Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. *Aquat. Toxicol.* **2003**, *63* (1), 43–62
- (24) Hua, J.; Vijver, M. G.; Ahmad, F.; Richardson, M. K.; Peijnenburg, W. J. Toxicity of different-size copper nano- and submicron particles and their shed copper ions to zebrafish embryos. *Environ. Toxicol. Chem.* **2014**, *33* (8), 1774–1782.
- (25) Hua, J.; Vijver, M. G.; Richardson, M. K.; Ahmad, F.; Peijnenburg, W. J. Particle-specific toxicity effects of differently shaped ZnO nanoparticles to zebrafish embryos (*Danio rerio*). *Environ. Toxicol. Chem.* **2014**, 33 (12), 2859–2868.
- (26) Adam, N.; Leroux, F.; Knapen, D.; Bals, S.; Blust, R. The uptake of ZnO and CuO nanoparticles in the water-flea *Daphnia magna* under acute exposure scenarios. *Environ. Pollut.* **2014**, 194 (2014), 130–137.
- (27) Merdzan, V.; Domingos, R. F.; Monterio, C. E.; Hadioui, M.; Wilkinson, K. J. The effects of different coatings on zinc oxide nanoparticles and their influence on dissolution and bioaccumulation by the green algam *C. reinhardtii*. *Sci. Total Environ.* **2014**, 488–489 (2014), 316–324.
- (28) Meulenkamp, E. A. Size dependence of the dissolution of ZnO nanoparticles. *J. Phys. Chem. B* **1998**, *102* (40), *7764–7769*.
- (29) Chang, Y. N.; Zhang, M. Y.; Xia, L.; Zhang, J.; Xing, G. M. The toxic effects and mechanisms of CuO and ZnO nanoparticles. *Materials* **2012**, *5* (12), 2850–2871.
- (30) Daly, H. R.; Campbell, I. C.; Hart, B. T. Copper toxicity to *Paratya australiensis*: II Influence of bicarbonate and ionic strength. *Environ. Toxicol. Chem.* **1990**, 9 (8), 1007–1011.
- (31) Lopes, S.; Ribeiro, F.; Wojnarowicz, J.; Łojkowski, W.; Jurkschat, K.; Crossley, A.; Soares, A. M. V. M; Loureiro, S. Zinc oxide nanoparticles toxicity to *Daphnia magna*: size-dependent effects and dissolution. *Environ. Toxicol. Chem.* **2014**, 33 (1), 190–198.
- (32) Bian, S. W.; Mudunkotuwa, I. A.; Rupasinghe, T.; Grassian, V. H. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: Influence of pH, ionic strength, size and adsorption of humic acid. *Langmuir* **2011**, *27* (10), 6059–6068.

- (33) Petersen, E. J.; Akkanen, J.; Kukkonen, J. V. K.; Weber, W. J. Biological uptake and depuration of carbon nanotubes by *Daphnia magna*. *Environ*. *Sci. Technol.* **2009**, 43 (8), 2969–2975.
- (34) Pakarinen, K.; Petersen, E. J.; Alvila, L.; Waissi-Leinonen, G. C.; Akkanen, J.; Leppänen, M. T.; Kukkonen, J. V. K. A screening study on the fate of fullerenes (nC_{60}) and their toxicity implications in natural freshwaters. *Environ. Toxicol. Chem.* **2013**, 32 (6), 1224–1232.
- (35) Guo, X.; Dong, S.; Petersen, E. J.; Gao, S.; Huang, Q.; Mao, L. Biological uptake and depuration of radio-labeled graphene by *Daphnia magna. Environ. Sci. Technol.* **2013**, 47 (21), 12524–12531.
- (36) Geller, W.; Müller, H. The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. *Oecologia* **1981**, 49 (3), 316–321.
- (37) Lee, B. T.; Ranville, J. F. The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by *Daphnia magna. J. Hazard. Mater.* **2012**, 213-214 (2012), 434–439.
- (38) Tervonen, K.; Waissi, G.; Petersen, E. J.; Akkanen, J.; Kukkonen, J. V. K. Analysis of fullerene-C₆₀ and kinetic measurements for its accumulation and depuration in *Daphnia magna. Environ. Toxicol. Chem.* **2010**, 29 (5), 1072–1078.
- (39) Tan, C.; Fan, W. H.; Wang, W. X. Role of titanium dioxide nanoparticles in the elevated uptake and retention of cadmium and zinc in *Daphnia magna*. *Environ. Sci. Technol.* **2012**, 46 (1), 469–476.
- (40) Mwaanga, P.; Carraway, E. R.; van den Hurk, P. The induction of biochemical changes in *Daphnia magna* by CuO and ZnO nanoparticles. *Aquat. Toxicol.* **2014**, *150* (2014), 201–209.